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Summary 
 
As global biodiversity continues to face an unprecedented crisis imposed by habitat loss and invasive 
species, endangered plant species conservation is crucial for restoring environmental equilibrium. 
Conservation managers nowadays are facing difficult decisions due to limited resources and numerous 
projects awaiting funding. In this problem, we are tasked with coming up with a priority order of funding for 
the given 48 plant conservation projects under the Florida Rare Plant Conservation Endowment (FRPCE) 
Board.  
 
Before developing our model, we first identify the relevant objectives that the Board would want to meet in 
deciding the fundraising schedule. Firstly, they would want to maximize expected net benefit, which is 
represented by a weighted score incorporating benefit, cost, taxonomic uniqueness and feasibility of the 
selected projects. Since we expect the Endowment to have a relatively constant annual revenue, they would 
also prefer schedules with minimal fluctuations in yearly spending. To meet these objectives, we identify 
the common characteristics of imperiled plant species and interpret the factors involved in their 
conservation. 
 
In our model development, we establish a feasibility decay function to model the increasing risk of 
extinction if conservation actions are not taken or delayed. This is accomplished by logistic population 
growth with Allee effect. Next, to determine which projects to prioritize, we assign a Priority Index to each 
project in each year, which takes into account the project’s benefit, taxonomic uniqueness, feasibility of 
success, total cost, and duration. Priority Index is determined using the Technique for Order of Preference 
by Similarity to Ideal Solution (TOPSIS) and Entropy Weight Method. Subsequently, we employ Dynamic 
Programming with Greedy Algorithm to obtain an initial schedule that maximizes the sum of Priority Index 
of selected projects. The schedule specifies the projects that the Board should prioritize to fund in each year, 
and displays the required yearly expenditure. 
 
Genetic Algorithm is then used to optimize our initial schedule. We use a comprehensive total score as our 
objective function, which incorporates both the expected net benefit as well as the standard deviation of our 
proposed annual funding schedule. The algorithm performs crossover, mutation, and tournament selection to 
reach a schedule with the best total score. After iterating 300 generations, we obtained our optimal schedule. 
For a schedule with a maximum funding cap of $500,000, the use of Genetic Algorithm can reduce standard 
deviation in yearly spending from 109443 to 39215. 
 
To suggest to the Board an optimal fundraising schedule that can minimize funds raised and achieve 
long-term and reliable funding, we choose $500,000 as the funding cap. In case they want to complete all 
the projects, we also provide them with the schedule with a funding cap $2,000,000. Lastly, we present our 
priority order of funding in a color-coded table which specifies the starting year of each project.  
 
Keywords: Conservation of Endangered Plant Species, Logistic Model with Allee Effect, TOPSIS 
Enhanced by Entropy Weight Method, Dynamic Programming with Greedy Solution, Genetic Algorithm 
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1 Introduction

1.1 Background

Florida, a biodiversity hotspot, is home to 215 endemic plant species due to its unique geograph-
ical location and environment. However, residential, agricultural and commercial development
has contributed to habitat degradation and loss, while invasive plant species have competed
with endemic species and formed single-species environments[1]. These factors caused the plant
extinction rate in Florida to skyrocket with more than 60 plant species federally listed as en-
dangered or threatened[2].

In light of this, authorities have come up with protection measures to restore ecological balance.
The US Endangered Species Act of 1973 requires that all threatened and endangered species to
be covered by a specific recovery plan[3]. In Florida, the Fish & Wildlife Foundation of Florida
garners more than $4 million annually for conservation actions[4] and has helped to conserve
8,000 acres of critical wildlife habitat[5]. The Foundation has also initiated the Florida Rare
Plant Conservation Endowment (FRPCE), a trust fund to support imperiled plant species
conservation projects.

Nevertheless, conserving imperiled species remains an uphill task. One reason is limited fund-
ing, which poses a conundrum for conservation organisations: should they prioritize investment
in species whose survival will benefit the most or those facing impending extinction[6]? Given
the complexity involved in resource allocation, species recovery requires strategic and forward-
looking planning.

1.2 Problem Restatement

Because of the aforementioned difficulties in prioritizing conservation projects, we propose a
solution for the FRPCE Board to make decisions on which projects to invest and how to pri-
oritize funding efficiently.

Firstly, we need to identify desirable goals for funding conservation projects and establish cri-
teria to evaluate our generated fundraising schedule (i.e. plan of annual expenditure with time).

Secondly, we are asked to do research on the common attributes of endangered plant species
as well as conventional protection measures. We should relate the factors involved in the at-
tributes and measures to the ones used in our model.

Using our defined objectives and factors, we should develop models and algorithms to obtain an
optimal funding schedule which minimizes the fluctuations in yearly budget but still achieves
a high expected net benefit score.

Lastly, we need to translate our funding schedule into a priority plan that recommends the
order of investment for the recovery projects, under different annual funding restriction.

Based on our analysis, we develop a mathematical model to schedule the 48 recovery projects
provided in the question. Firstly, we consider the impact of time on the feasibility of success
of projects. Afterwards, to evaluate each project based on the data given, we develop a Pri-
ority Index, which is then used to generate an initial schedule using Dynamic Programming
and Greedy Algorithm. Finally, we incorporate the Genetic Algorithm to obtain an optimal
schedule which minimizes fluctuations in yearly spending.
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2 Assumptions and Notations

2.1 Assumptions and Justification

Assumption: No other organizations are conserving the 48 endangered plant species in
Florida.
Justification: According to the Federal and State Endangered and Threatened Species Ex-
penditures [7], Fish and Wildlife Service(FWS) plays a major part in funding conservation and
recovery of Florida’s endangered plant species. For instance, in 2017, Polygala smallii and
Dicerandra christmanii only received funding from FWS. Since FWS conserves species by var-
ious initiatives, it is justifiable to assume that FRPCE is the one providing funds for plant
conservation.

Assumption: Feasibility of success decreases with time if a project is delayed (i.e. does
not start from Year 1 of the schedule).
Justification: When a project does not receive timely funding, the lack of conservation man-
agement causes the species to continue to face crisis and thus to decline in population. By
research[8], the more critically endangered a species is, the more likely a project will fail to
save it from extinction. We will account for this trend in more detail in our model development.

Assumption: Benefit and taxonomic uniqueness do not vary with time.
Justification:
1. As we have already accounted for the change in the risk of extinction in feasibility of success,
and the difficulty level of performing conservation actions is unlikely to change for a planned
project, for the ease of our model development, we assume the benefit of a project to be con-
stant.
2. The taxonomic information of a species is not likely to change over the course of the sched-
ule (about 30 to 40 years) due to the modern rigorous biological classification system[9], so
taxonomic uniqueness is also time-independent.

Assumption: The FRPCE Board has a relatively constant annual budget for conservation
projects and provides funds for them on a yearly basis.
Justification: The Endowment uses investment income to fund conservation projects. Since
no information is given, we can assume they generate a stable revenue. Additionally, in the
U.S, conservation funds are usually issued annually[10]. The costs incurred by each project
are given by year, so we assume that the FRPCE Board grants funding annually to each project.

Assumption: Some fluctuations in the annual budget are acceptable.
Justification: It is unrealistic to cap the annual funding at a precise amount. Hence, there
should be some extent of fluctuation allowed when determining funding for each year.
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2.2 Notations and Definitions

Symbol Meaning Units

bi Benefit of project i -
ui Taxonomic Uniqueness of project i -
ci Total Cost of project i US dollar
fi(t) Feasibility of Success of project i in year t -
N Total number of years year
ρi Population density of species i -
ρ0 Critical population density -
r Extinction rate coefficient -

PRIi(t) Priority Index of project i in year t -

T
(i)
k Starting year1 of project i in schedule k year
EB Expected net benefit -
TSk Total Score of schedule k -

Table 1: Symbols used, their meaning and units

3 Model Development

3.1 Model Objectives

In deciding its funding priorities, the FRPCE Board has multiple desired objectives. These
objectives are related to (but not limited to) the conservation status of a species, the existing
fund as well as the proposed projects. To help them make their decisions, we identified and
shortlisted some of the most important objectives and chose to include them in our modelling
process.

1. Achieve maximum total benefit. This is the utmost priority for the Board since the
endowment is set up to support conservation projects for Florida imperiled plant species.
This total benefit should take into account benefit, taxonomic uniqueness as well as the
feasibility of success for each project.

2. Minimize fluctuations in yearly expenditure. Since we do not have information on
the Board’s revenue each year, we assume them to be relatively constant. By minimizing
fluctuations and thus keeping the annual budget to be relatively stable, the Board could
balance funds available with accumulated spending.

3. Achieve high cost-effectiveness. For the fundraising plan to be reliable, the Board
should aim to complete a large number, if not all, of the projects. The best plan should
also keep the annual budget reasonably low.

4. Fund chosen projects continuously until completion. By providing long-term and
reliable funding for conservation projects, the Board should ensure that each project
receives adequate funds over the whole duration of the project.

The measures used to evaluate our generated funding plan will be established later in our model
development section.

1In our model, we take Year 1 as the starting year of the schedule.
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3.2 Explanation of Factors

3.2.1 Common Characteristics of Imperiled Plants

By research, endangered plant species have some common characteristics.

They usually have specific requirements for the environment. For instance, Bonamia
grandiflora, an endangered species in Florida, is dependent on the sunny cleared areas left by
periodic fires or physical disturbance. Fire suppression left their natural habitat overgrown and
unsuitable for highly specialized scrub endemics that require open sunny patches. Thus, the
loss of suitable habitat inevitably leads to the decline in the species’ population. Some other
species have requirements for periodic disruptions to flower or seed.

Some plant species are naturally rare and hence prone to extinction. They may have ge-
netic self-incompatibility which prevents them from self-fertilization. The germination rate,
reproductive rate is relatively low for the endangered species, possibly a result of their limited
habitat.

Most of the listed species are endemic to Florida, which means that they are naturally present
only in Florida. Most of them have a very small range size and are geographically concentrated.
This causes the species to be more vulnerable to environmental or human disruptions, thus
these species run a higher risk of extinction.

3.2.2 Protection Measures

From the South Florida Multi-species Recovery Plan[11], we identify key measures involved in
these endangered species’ protection.

On a species-level, to protect and enhance existing populations, research, monitoring, surveys
are often needed, depending on the current availability of data.

On a habitat-level, major recovery actions include securing habitat through acquisition, con-
ducting prescribed burns, controlling and eliminating invasive plant species, controlling access
to areas where endangered plants are growing and (re)introducing plants to protected sites.

3.2.3 Factors Interpretation

From an environmental viewpoint, conservation of plant species aids in restoring ecological
equilibrium and improving pollination, climate regulation, nutrition recycling, and carbon
sequestration[12, 13]. Conservation of plant species also carries economic ripple effects like
ecotourism. This is incorporated into the benefit factor which indicates the expected relative
conservation value of funding one species over another. Besides, benefit of protection is directly
related to the conservation status of each species, which specifies the level of endangerment.

The aforementioned measures to restore species’ natural habitat require different amounts of
money depending on the specific measures that need to be put in place. Specifically, some
species’ recovery plans involve land acquisition, landowner agreements and some require ex-
tensive research to be done. The total cost factor, c, takes this aspect of conservation into
consideration.
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Since there are uncertainties in plant species’ reproduction and their response to some manage-
ment actions like prescribed fires2 is not studied thoroughly enough, the protection measures
are not perfect solutions to save these species from extinction. The varying effectiveness of
conservation management[14] and species’ different vulnerabilities to environmental disruption
are taken into account by the feasibility of success factor, f(t).

The duration of each conservation project differs and is represented by the number of years
factor, N .

The taxonomic uniqueness factor, u, indicates the relative rareness in genetics of a spe-
cific plant species and its phylogenetic diversity (evolutionary history stored in a species’ genes).

3.3 Evaluating individual projects

3.3.1 Population Model

The logistic equation describes the growth rate of a population with limited resources. In order
to predict the change in population size of the 48 imperiled plant species within the span of
our schedule, we consider the logistic equation to describe population decrease. Typically, the
logistic equation is:

dρi
dt

= −rρi (1− ρi)

where ρi represents the population density of the ith species, t represents the time, r represents
the growth coefficient. Here, population density means the ratio of current population to the
region’s carrying capacity, which refers to the maximum population size of a species that can
be sustained in a specific environment, given constraints on available resources like food, water
and habitat.

However, there are two problems with the logistic model:

1. The model cannot account for the effect of the recovery project as the population size is
constantly decreasing;

2. The model is less applicable for imperiled plants with small populations.

To improve our model, we incorporate Allee effect which occurs in small or sparse popula-
tion. Allee effect describes a positive relationship between individual fitness and population
density[15]. In the case of imperiled plants, the larger the group population, the more likely
an imperiled plant will survive extinction. We assume strong Allee effect for most 48 imperiled
plants. Strong Allee effect can induce a critical population density below which the population
growth rate is negative and extinction is likely to occur[16]. Thus, to protect an imperiled plant
species from extinction, we only need to raise its population size above the critical population
density to ensure positive population growth rate. This is aligned with our research that the
goal of recovering endangered species is to increase their population to be self-sustaining. Our
modified logistic equation is:

dρi
dt

= −rρi (1− ρi) (ρi − ρ0)

where ρ0 represents the critical population density. Setting r = 0.3, ρ0 = 0.5 and the maximum
population density to be one unit, we plot a graph for two models:

2A planned fire applied to meet management objectives.
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Figure 1: A comparison between unimproved logistic model (gray)
and improved logistic model (red and green)

3.3.2 Feasibility Decay

According to our modified logistic model, population density of 48 imperiled species decreases
with time if no actions are taken to protect them. To better protect imperiled species, actions
should be taken as early as possible to ensure higher feasibility of success. However, it is im-
possible to start all projects simultaneously in the first year due to limited funding. Therefore,
a discussion about how feasibility changes with time is important for us to better schedule the
protection measures and come up with a long-term and reliable solution. In our model, the
feasibility of a project will stop decreasing once the project starts, as recovery efforts are made
to avoid extinction.

We assume that feasibility of a project at a particular year is directly proportional to the
population density. This is justified since f = 0 when ρi = 0 (i.e. extinction) and f = 1 when
ρi = ρ0 (i.e. self-sustaining, no protection measure is needed).

fi(t) ∝ ρi(t)

Thus, we solve the differential equation using Mathematica to get the feasibility with time
function of a project with initial feasibility slightly below 1 (in this case f(0) = 0.998):

f (t) = 1−
√
ert + 250000× e0.5rt
e0.5rt + 250000

Since feasibility is the only variable in the differential equation, the function is invariant under
translation along the horizontal axis. Therefore, all feasibility decay functions can be obtained
by translating the previous function along the horizontal axis.

Figure 2: Feasibility decay for different projects when r = 0.3
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In this model, the speed of decay can be adjusted by changing the extinction rate coefficient,
r, of the species. In order make the effect of feasibility decay significant in our model, we set
r to 0.3.

3.3.3 Priority Index

Figure 3: Flowchart of Priority Index computation

To evaluate which project the FRPCE board should prioritize, we use the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) to construct the Priority Index, and the
Entropy Weight Method to determine the weight of each factor. As feasibility decreases with
time, the Priority Index will also vary with respect to time. In this section, we will compute
the Priority Index of each project in each year using the five factors mentioned in the previous
part: benefit, taxonomic uniqueness, feasibility of success, total cost and total number of years.

Firstly, we generate an n × m evaluation matrix X(t) of year t, where n is the number of
projects, m is the number of factors, and xij is the value of the jth factor of the ith project.

X(t) =


x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
. . .

...
xn1 xn2 · · · xnm


Next, we have to convert the factors into the same type. In this problem, benefit and taxo-
nomic uniqueness are benefit factors[17], where greater values indicate greater priority. Total
cost and total number of years are cost factors, where smaller values indicate greater priority.
For feasibility of success, based on our decay function, it decreases the fastest at intermediate
values and the slowest at extreme values. In our model, we want to prevent the feasibility
from experiencing a rapid decay. Hence, we will prioritize projects whose current feasibility
sits within an intermediate interval [lb, ub] and we call feasibility of success an interval factor.

To unify the factor type, we perform positivization to convert all factors into benefit factors
and transform matrix X(t) into X̃(t), the positivized evaluation matrix.

For benefit factors, there is no need for factor type conversion, i.e. x̃ij = xij.
For cost factors,

x̃ij = max {xij} − xij, i = 1, ..., n

For interval factors, we denote the maximum distance of the data to the interval as Mj, i.e.

Mj = max {lb−min {xij} ,max {xij} − ub} , i = 1, ..., n

Performing positivization,

x̃ij =


1− lb−xij

Mj
, xij < lb

1, lb ≤ xij ≤ ub

1− ub−xij

Mj
, xij > ub

, i = 1, ..., n
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Then, we perform normalization to transform the evaluation matrix from X̃(t) to Z(t) to
ensure all factors are on the same scale. We denote the normalized factor value as zij.

zij =
x̃ij√∑n
i=1 x̃

2
ij

, i = 1, ..., n, j = 1, ...,m

To determine the weight of each factor, subjective methods such as Analytic Hierarchy Process
(AHP) are often used. However, the success of these methods depends on accurate judgement
of factors’ relative importance[18]. This is hard to achieve as humans are often obscured by
their emotions and prejudices. On the other hand, objective weighting methods are able to
reflect the amount of useful information in the set of factors given and thus are better at
preventing human prejudices[19]. Hence, we choose to use the Entropy Weight Method. In
our model, we assume that the weight of each factor is fixed (i.e. does not vary with time).
We will use the data from the starting year (i.e. Z(1)) to compute the weights.

Step 1: the standardized value of the jth factor of the ith project is given by pij =
zij/
∑n

i=1 zij

Step 2: the entropy value of the jth factor is defined as ej = −
∑n

i=1 pij ln (pij)/lnn [20]

Step 3: calculate the weight of the jth factor wj = (1− ej)/
∑m

j=1 (1− ej)

From the data given, we obtain wi (i = 1 − 5 represents the weight of benefit, taxonomic
uniqueness, feasibility of success, total cost and total number of years respectively):

w1 w2 w3 w4 w5

0.141 0.062 0.486 0.095 0.217

Table 2: Weight of each factor given by Entropy Weight Method

Now we proceed to calculate the Priority Index of the ith project in a particular year. Firstly
we define Z+

j and Z−j as the maximum and minimum value in the jth column of matrix Z.

Z+ =
(
Z+

1 , ..., Z
+
m

)
= (max {z11, ..., zn1} , ...,max {z1m, ..., znm})

Z− =
(
Z−1 , ..., Z

−
m

)
= (min {z11, ..., zn1} , ...,min {z1m, ..., znm})

Then, we define D+
i and D−i as the weighted Euclidean distance from the ith project to the

best possible project and the worst possible project respectively.

D+
i =

√√√√ m∑
j=1

wj

(
Z+

j − zij
)2
, D−i =

√√√√ m∑
j=1

wj

(
Z−j − zij

)2
Therefore, the Priority Index of the ith project in year t after normalization, PRIi(t), can be
computed as follows:

PRIi(t) =
Si∑n
i=1 Si

where Si =
D−

i

D+
i +D−

i

.

The Priority Index we obtained can be found in Appendix. Due to space limit, we only
display the Priority Index of every 5 years.
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3.4 Crafting Fundraising Schedule

Having obtained the Priority Index PRIi(t) of each project in each year, we can now use
Dynamic Programming with Greedy Algorithm to determine a fairly efficient schedule that
demonstrates which projects should be prioritized to invest in each year amongst our 48 recovery
projects.

3.4.1 Dynamic Programming

Firstly, we use Dynamic Programming (DP) to decide which projects to fund in each individual
year. For now, we assume none of the projects has been selected.

Analogous to 0-1 Knapsack Problem, our goal is to maximize the total Priority Index PRIi(t)
of year t, while keeping the total funding that selected projects require in each year under a
reasonable limit, MaxFund. In our case, each of the 48 projects has its value in terms of
Priority Index PRIi(t), and its costs in the first year, Costi (given in the database). The total
costs of selected projects cannot exceed MaxFund. Each project is either chosen to be funded,
or not selected in that year.

We denote the state function DP (i, Fund) as the maximum
∑
PRIi(t) obtainable when we

are to choose among the first i (i ≤ 48) projects, under the constraint that total yearly costs
required do not exceed Fund (Fund ≤ MaxFund). Hence, for a particular i and Fund, we
have two options:

1. If the ith project is not selected, the maximum Priority Index obtainable in DP (i, Fund)
is equivalent to DP (i− 1, Fund).

2. If the ith project is selected, we can gain additional PRIi, on top of what can be obtained
from DP (i− 1, Fund− Costi).

We should select the option that gives a higher total Priority Index obtainable. Hence, the
recurrent equation can be written as:

DP (i, Fund) = max {DP (i− 1, Fund), DP (i− 1, Fund− Costi) + PRIi(t)}

To visualize this concept, we design the following pseudocode. Note that in coding, function
DP (i, Fund) is represented by a 2-D array of i rows and Fund columns, so Fund must be an
integer. Hence, during DP, we rounded up the costs of each project to integer. Rounding up
also makes sure that total costs from selected projects will not exceed MaxFund.
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Algorithm 1 Dynamic Programming

read MaxFund, Cost[1...48], PRI[1...48]
declare DP : array [1...48, 1...MaxFund] of float
for i← 1 to 48 do

Fund ← MaxFund
repeat

DP [i][Fund] = max(DP [i− 1][Fund], DP [i− 1][Fund− Cost[i]] + PRI[i])
Fund ← Fund− 1

until Fund ≤ Cost[i]
repeat

DP [i][Fund] ← DP [i− 1][Fund]
Fund ← Fund− 1

until Fund ≤ 0
end for

Now that we have used DP (i, Fund) as memoization of our results, we can backtrack the
projects that were selected from DP (48,MaxFund), which stores the highest Priority Index.
The pseudocode is shown below.

Algorithm 1 Dynamic Programming - Backtrack

declare ProjectStatus: array [1...48] of boolean
BackTrack(48, MaxFund)
procedure BackTrack(i, w)

if i = 0 then . Base case
return

else if DP [i][w] > DP [i− 1][w] then
ProjectStatus[i]← 1 . Project i is selected
BackTrack(i− 1, w − Cost[i])

else
ProjectStatus[i]← 0 . Project i is not selected
BackTrack(i− 1, w)

end if
end procedure

3.4.2 Greedy Algorithm

As our schedule spans across N years, the main idea of Greedy Solution is that we use DP to
select the optimal set of projects to fund in each year. By iterating this procedure N times,
the total Priority Index

∑
PRIi in each of the N years will also be maximized.

Here we explain the structure of our Greedy Algorithm:

Step 1: Before the start of year 1, we set a FundCap that restricts the maximum cost
required in each year. We initialize the Cost and PRI for each project.

Step 2: At the start of each iteration, we check for all projects that are already selected
from previous years and are currently ongoing. As these projects have to continue
to be funded this year (Model Objective 3), we deduct their costs from FundCap
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and assign the remaining costs to MaxFund, which is the money limited for DP
to choose among unselected projects.

MaxFund = FundCap−
∑

Costs of ongoing projects

Step 3: At the start of each iteration, we also refresh the PRIi(t) for each unselected
projects, based on the Feasibility Decay function fi(t) (See section 3.3.2), where
t here refers to the corresponding year.

Step 4: Perform Dynamic Programming among unselected projects to choose the combi-
nation that gives the highest

∑
PRIi(t) of that year, using the updated values

of MaxFund and PRIi(t).

Step 5: Update the schedule for newly selected projects. Increase the year by 1.

Step 6: Repeat Step 2 to Step 5 until N iterations are completed. Display the schedule
and evaluate its effectiveness (See Section 3.4.3).

However, we notice that if we set the total number of years N to be constant, after N iterations,
some projects which have been chosen are not completed because they started too late. To be
more flexible, we may adjust N at the end of Greedy Algorithm, by examining those ongoing
yet incomplete projects:

1. If a project requires only a few years left to complete and has relatively high Priority
Index among the incomplete projects, we may extend the total number of years N until
this project is complete.

2. Otherwise, we may abandon this project entirely, remove its costs from our schedule, and
repeat Greedy Algorithm to find the best schedule among the remaining projects. Total
number of years N will become the end year of the last completed project.

This small modification may increase the number of projects recovered, while saving costs from
projects that are unrealistic to complete.

Here, we present the complete flowchart that illustrates the above process:

Figure 4: Greedy Algorithm to determine initial schedule

There are several reasons why we can apply Greedy Solution here:

1. We want to achieve an overall high Priority Index since PRIi(t) takes the effect of fea-
sibility decay fi(t) into account. By maximizing sum of Priority Index, we can conserve
plant species that need urgent actions first.
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2. We also observe that in the database provided, the funding required for most projects
decreases over time (*). Hence, this ensures that the total costs from ongoing projects in
subsequent years will not exceed FundCap, and hence there will be remaining MaxFund
for DP in the subsequent years.

(*) We notice that in the data given, the budget for 47 out of 48 projects decreases continually
over the years, except for 1-Flowering Plants-486 whose budget falls to zero from year 4 but
suddenly spikes in year 10. Here, we temporarily modify the budget plan of this project to be
in descending order throughout the 10 years, by transferring its year 10 costs to the previous
years. Hence, in the preceding years the project requires more funds than what it actually
requires, so we treat these extra funds as savings for the 10th year.

3.4.3 Evaluating Our Initial Schedule

Using the above algorithms, we generate an initial schedule, setting the total number of years
N = 35 and annual funding cap FundCap = $500, 000.

Figure 5: Our proposed schedule obtained by DP and Greedy Algorithm

Figure 6: Yearly funding required

To evaluate the effectiveness of a schedule, we first calculate its expected net benefit, EB,
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using the formula below[21]:

EB =
∑
i∈S

(w′1bi + w′2ui) fi
ci

where S is the set of selected projects, w′1 = w1

w1+w2
and w′2 = w2

w1+w2
in which w1 and w2 are

the weights assigns to benefit bi and taxonomic uniqueness ui in Entropy Weight Method re-
spectively. fi is the feasibility of the ith project when it starts, and ci is the total cost of the
ith project. EB takes into account all factors except for the total number of years of projects
since our schedule will span a significantly longer period compared to the duration of individual
projects. Hence duration of each project is not very relevant to the benefits gained from its
completion.

It is noteworthy that we use PRIi to determine the priority order of project selection but not
EB. This is because EB does not include the effect of feasibility decay and the total number
of years taken to finish each project. If we use EB to determine the priority order of each
project, we are more likely to optimize yearly benefit instead of long-term benefit.

Moreover, EB alone cannot comprehensively evaluate our initial schedule since it does not
reflect the fluctuation of yearly funding requirement. In order to take fluctuation into account,
we use total score TS,

TS =
1000× EB

σ

where σ represents the standard deviation of yearly funding and 1000 is a scaling factor.

From our initial schedule, we obtain EB = 81.88, σ = 109443 and TS = 0.748. While our
initial schedule can provide a reasonably good EB, it has a large fluctuation towards the end
of the schedule, leading to a poor TS. To maximize TS, we present an optimization algorithm
in the next section.

3.5 Schedule Optimization

From the previous section, we can obtain a schedule using DP and the Greedy Algorithm.
However, there are two limitations to the schedule. Firstly, it fails to account for our objective
to minimize the fluctuations of yearly funding. As shown in Figure 6, yearly funding falls
sharply from year 27, which leads to a high σ and thus a low TS. Secondly, the use of greedy
algorithm only ensures an optimal solution at each iteration. The schedule obtained may not
be a global optimum. Therefore, to optimize our schedule, we use the Genetic Algorithm (GA).

3.5.1 Genetic Algorithm (GA)

First proposed by J. H. Holland[22] and L. J. Fogel et al.[23] based on Darwin’s Evolutionary
Theory, GA starts from an initial population that represents admissible solutions to a problem
through suitable coding. Leveraging on the principle of variation by crossover, mutation and
selection of the fittest, it iterates through generations and solves the problem satisfactorily[24].

GA has multiple advantages. Firstly, it is able to deal with complex optimization problems
with different types of objective (fitness) function, be it stationary or non-stationary (changes
with time), linear or nonlinear, discrete or continuous. Secondly, it supports multi-objective
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optimization. Thirdly, since individuals in the population act like independent agents, they
can explore the search space in many directions simultaneously, which significantly reduces the
possibility of being stuck in a local optimum[25].

To implement GA, we abstract our schedule k into a chromosome. Each of the 48 projects rep-
resents a distinct gene and the starting year of the ith project, T

(i)
k , is the “genetic information”

that will be modified. Here are the specific notations we will use for GA:

Symbol Meaning

Pc Probability of crossover
Pm Probability of mutation
a Maximal number changed to the starting year if mutated
q Number of population (children produced) in each generation
s Number of children selected in each generation
M Total number of generations

In the following part we will use 2 parents and 2 children to illustrate the algorithm. Firstly,
after initializing the population, we apply 2-point crossover to the parents. To do this, we
randomly select two positions on the chromosome, dividing the chromosome of each parent
into three parts. Next, we switch the middle parts at probability Pc to obtain two children.

Then, at probability Pm, each gene in a child would mutate by adding a random integer rang-
ing from −a to a. There are some restrictions to mutation. Firstly, the starting and ending
year of each project after mutation must still be within [1, N ]. Secondly, while aiming to re-
duce fluctuation, a mutated solution must still possess at least 95%EB of our initial solution
to prevent excessive decline in EB when certain projects are delayed. The process of crossover
and mutation is illustrated in Figure 7.

Figure 7: Crossover and mutation

Next, according to the principle of “survival of the fittest”, we apply tournament selection
to select 2 out of the q children as the parents of the next generation. We carry out tournament
selection twice: each time we randomly select 3

4
of the population q, and pick the individual

with the highest TS (fitness level) to be one of the 2 parents next year. Note that we do not
directly select the best 2 individuals out of the whole population, but allow for some “noise”
– or probability – of selecting the “sub-best” solutions, so that our generations will be more
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diversified and will not be stuck in local optimum solution. After the 2 parents are selected,
they will crossover and mutate again to produce the next generation of solutions. The whole
process will iterate through M generations and we will keep track of the overall best solution.

Figure 8: Flowchart of Generic Algorithm

In our problem, we take a = 10, q = 100, s = 2, M = 300 . As the initial solution only consists
of one individual (Figure 5, initial schedule obtained from DP), it will self mutate 100 separate
times to produce the first generation and the crossover process will only start from the second
generation. We use tournament selection to select 2 children in each generation as parents
of the next generation which will crossover and mutate to produce children for the next gen-
eration. We obtain the following optimized schedule and we compare it with the initial schedule:

Figure 9: Our improved schedule obtained by GA

3.5.2 Result Comparison

We plot the yearly funding of two schedules (Figure 10), and the improved one has two advan-
tages: firstly, the unimproved schedule has a sharp decline from year 28 whereas our improved
one achieves a relatively consistent funding throughout the duration, leading to a much lower
fluctuation; secondly, the improved schedule takes 3 years less to finish the same number of
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projects without exceeding the fund limit, indicating that the fund is used more efficiently.

Figure 10: Comparison of two schedules

Furthermore, another advantage of using GA is that we are able to deal with data of different
trends. In the data given in the question, funding requirement for 47 of 48 projects decreases
continually as time goes on. In reality, yearly cost of a project can go up and down as time
goes on. With GA, we can always minimize the yearly funding fluctuation by rearranging the
order of projects. Here we give an example where the funding required for each project is
reversed (i.e. the funding required for projects in each year increases with time). As shown in
Figure 11, the unimproved schedule has a huge spike in funding during the starting years and
fluctuates more violently than the improved schedule. This suggests significant improvements
using GA.

Figure 11: Reversed data



Team 10997 HiMCM Page 18 of 24

3.5.3 Different Initial Conditions

For GA, different initial conditions may lead to different optimized outcomes. If the initial
solution is far off from the global maximum, solution is likely to converge to a local maximum
instead. In our model, we choose the result obtained from greedy algorithm and DP as our
initial condition. To show why this initial schedule is necessary, we further obtained the result
of GA if the initial condition is set randomly.

Figure 12: Convergence plot

In Figure 12, the random initial condition has a lower fitness value. Besides, it does not
converge to the optimized fitness value obtained by the one where the initial condition is given
by DP. One possible reason may be the undetermined pool of projects chosen in the first year.
In order to minimize the yearly funding fluctuation, GA may choose those projects which meet
the funding requirement but are of low benefit values. This ultimately restrains the optimized
fitness value.

4 Results

From DP, we obtained the relationship between the number of completed projects and FundCap.

Figure 13: Relationship between the number of completed projects and yearly funding cap
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Figure 14: Color-coded
priority order of recom-
mended schedules

For the FRPCE Board to achieve a “long-term and re-
liable funding” where omission of certain projects is al-
lowed, we recommend $500,000 as the minimum fundrais-
ing required since it can complete a relatively high num-
ber of projects (43 of 48) while keeping the cost low.
On the other hand, completing all projects within a rea-
sonable time period (40 years) requires a maximum yearly
funding cap of at least $2,000,000. We also recommend
this schedule to the Board if they insist on completing all
projects.

Subsequently, we use GA to optimize the initial schedule
generated by DP and Greedy Algorithm. The priority or-
der of projects in these two schedules are presented in Fig-
ure 14. The value in each cell represents the starting
year of the project and NC means the project is not cho-
sen.

FundCap EB σ TS
$500, 000 77.801 39215 1.984

$2, 000, 000 85.744 126002 0.681
FundCap |S| Duration <yearly cost>
$500, 000 43 32 $444, 437.25

$2, 000, 000 48 40 $1, 274, 652.71

Table 3 Results of the recommended schedules

(S is the set of selected projects and |S| is number of completed
projects; <yearly cost> is the annual yearly cost.)

5 Sensitivity Analysis

To test the sensitivity of our model, we use the schedule with
yearly funding capped at $500, 000 and increase the extinc-
tion rate coefficient r by 1% (0.003) and 5% (0.015) respec-
tively. We observe that the initial schedule obtained after
DP and Greedy Algorithm does not change when r varies.
This attests to the robustness of our DP and Greedy solu-
tion.

However, one concern is that as the population of the species
decreases faster, feasibility will decrease faster, resulting in a
lower total expected net benefit that can be potentially yielded.
Hence, we will measure the change in EB, TS and yearly fund-
ing.



Team 10997 HiMCM Page 20 of 24

r EB EB % change TS TS % change
0.3 77.8 - 1.98 -

0.303 (+1%) 77.4 −0.46% 1.93 −2.72%
0.315 (+5%) 75.9 −2.42% 1.85 −6.75%

Table 4: Change in EB and TS

Figure 15: Change in annual funding when r is adjusted

From Table 4, we can see that when r is set to increase, the decrease in both EB and TS falls
within a reasonable range. Moreover, from Figure 15, our final yearly cost does not change
significantly when we adjust r. This shows that our optimization methods are generally stable
such that the change in r will not excessively affect the optimal schedule found.

6 Strengths and Weaknesses

6.1 Strengths

• Our model is realistic since we recognized that imperiled plant species without conser-
vation will continue to decline in population size. Because of this increasing risk of
extinction, the possibility of a conservation project saving the species from extinction
will definitely decrease, which means the feasibility of the project will decrease.

• We used two algorithms to generate the initial schedule and optimize it respectively. By
doing so, we can obtain an optimal solution with both a relatively high total benefit and
a minimized fluctuation in yearly expenditure.

• Our model can keep annual funding relatively constant even if the projects’ yearly costs
do not follow a decreasing trend. The use of Genetic Algorithm ensures that our initial
schedule is optimized and the yearly budget will not be exceeded by an unreasonable
amount.
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• Our model is highly customizable since the FRPCE Board could enter their perceived
relative importance of each factor in Priority Index.

• We used impartial and objective methods to determine the Priority Index. TOPSIS
can reflect the underlying difference between projects. The Entropy Weight Method
ensures the objectivity in decision-making by computing weight based on the amount of
information that can be derived from the data.

6.2 Weaknesses

• Feasibility decay function is idealized and may not describe the real life situation since the
population of endangered plant species are influenced by many factors like environmental
changes, individual species characteristics and other contingencies that cannot be easily
quantified.

• Projects with very high feasibility are treated the same as projects with very low feasibility
when computing Priority Index. This may cause projects with low feasibility being chosen
instead of those with high feasibility. This is not preferable for maximizing our expected
net benefit.

• We did not eliminate projects when their feasibility decay close to 0. Other factors like
a high benefit score contribute to its Priority Index, which may lead to it being chosen,
despite the fact that the project cannot contribute to total expected net benefit.

7 Conclusion

In conclusion, we managed to address the problem requirement fully by identifying objectives
and factors involved in the Board’s decision-making, and generating optimal schedules for dif-
ferent funding caps. We successfully employed DP to select the most urgent and valuable
projects and generated an initial schedule. Afterwards, we used Genetic Algorithm to optimize
our schedule, in particular minimized fluctuations in yearly expenditure. From our model, we
recommended the schedule obtained using $500, 000 as the yearly cap to the Board since it
exhibits high cost-effectiveness. The Board could also use $2, 000, 000 as the yearly cap if they
hope to complete all 48 recovery projects.

In the future, the limitations of our feasibility model could be addressed by using data gathered
by FWS to fit the feasibility decay curve.

While our model does provide a suggested priority order of funding for the 48 imperiled plant
species, a realistic concern would be how to adapt to a scenario where annual budgets are
changing and projecting future available funding based on given revenue in recent years. Nev-
ertheless, our model is still holistic in solving the resource allocation problem and can be easily
expanded to suit more complicated contexts.
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8 Memo

Date: 17/11/2020

To: The Florida Rare Plant Conservation Endowment (FRPCE) Board

From: HiMCM Team #10997

Subject: Recommendation of funding schedule for 48 imperiled plant species conservation

As a group of students passionate about mathematical modeling, we recently learnt about the
Board’s consistent efforts in funding imperiled plant species conservation projects in Florida.
We are also aware of the difficulty you are facing in prioritizing the various recovery projects.
Given the data set of 48 species’ conservation projects, we utilized mathematical models and
computer algorithms to generate funding schedules that can maximize conservation benefits,
and at the same time, minimize fluctuations in yearly expenditures.

In quantifying an aggregate expected net benefit score, we take into account the feasibility of
success, benefit, taxonomic uniqueness, and total costs of each project. A good funding plan
should achieve a high project success rate, save species with the most conservation value. We
also recognize that the Endowment would not like to spend too much or too little money on a
specific year, wasting or straining its yearly budget. Hence, our proposed plan is optimized to
have relatively stable yearly funding.

Based on our algorithm, we suggest $500,000 as the annual funding cap since 43 out of 48
projects can be completed and the schedule is the most cost-effective. Meanwhile, we present
$2,000,000 as the minimum yearly funding that could finish funding all projects in a reasonable
time span. The priority order of funding we obtained are listed in Figure 14. Under the specific
annual funding column, the number corresponding to a project indicates the start year of the
project. For instance, 1-Flowering Plants-135 should be funded starting from Year 2 when the
Board adopts the $500,000 funding cap. When the value is NC, this conservation project is
not chosen, usually because the yearly cost greatly exceeds the annual budget or the expected
net benefit is too low.

You can understand the rationale behind the schedule easily. In our model, we first used a
Priority Index to decide which projects to be funded first. Projects with greater benefit and
uniqueness are prioritized since they yield more conservation value. We also prioritize shorter
projects and those which require less funding to accommodate for more projects in the future.
Feasibility of a project was modeled to be decreasing logistically with time, which means the
feasibility of a project decreases the fastest near the median value. To achieve a high overall
evaluation score, we prioritize these projects since an extremely high/low feasibility does not
change appreciably with time. Based on our results, projects like 1-Flowering-Plants-502/481
are done during the first year as they have low total cost and short time span, fair benefit
and uniqueness as well as intermediate feasibility values. Projects with very high feasibility
like 514/179 are funded later since they are less urgent. Our model was tested to have the
maximum expected net benefit and minimum fluctuations in yearly expenditures.

We hope that by selecting and implementing the appropriate funding schedule from our results
table, your organization will be able to bring maximum welfare to Florida’s rare plants and
their habitat. An optimal funding schedule is crucial to conservation efforts in Florida given
pressing extinction threats imposed by climate change, land use change and urban development.
Species conservation still has a long way to go but we hope that our efforts can contribute to
your decision-making process to save endangered species.
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Appendix (Priority Index)

unique id Year 1 Year 5 Year 10 Year 15 Year 20 Year 25 Year 30 Year 35

Plants-502 0.024 0.025 0.028 0.028 0.023 0.019 0.018 0.017

Plants-436 0.022 0.018 0.015 0.014 0.014 0.015 0.015 0.016

Plants-536 0.018 0.021 0.027 0.035 0.044 0.055 0.058 0.042

Plants-486 0.023 0.024 0.026 0.031 0.033 0.026 0.020 0.016

Plants-183 0.016 0.014 0.013 0.013 0.014 0.015 0.015 0.016

Plants-480 0.022 0.018 0.015 0.014 0.014 0.015 0.015 0.016

Plants-135 0.024 0.025 0.021 0.018 0.016 0.016 0.016 0.016

Plants-481 0.024 0.025 0.028 0.033 0.035 0.028 0.022 0.019

Plants-176 0.024 0.024 0.019 0.016 0.015 0.015 0.015 0.016

Plants-475 0.024 0.020 0.016 0.015 0.015 0.015 0.016 0.016

Plants-546 0.024 0.025 0.025 0.020 0.017 0.016 0.016 0.016

Plants-558 0.023 0.025 0.027 0.033 0.039 0.032 0.025 0.020

Plants-553 0.024 0.025 0.027 0.031 0.026 0.021 0.018 0.017

Plants-442 0.024 0.025 0.025 0.020 0.017 0.016 0.016 0.016

Plants-537 0.023 0.025 0.028 0.033 0.038 0.031 0.024 0.020

Plants-548 0.017 0.020 0.025 0.031 0.040 0.050 0.051 0.037

Plants-426 0.023 0.020 0.016 0.014 0.014 0.014 0.014 0.015

Plants-452 0.026 0.027 0.028 0.023 0.019 0.018 0.017 0.017

Plants-173 0.014 0.012 0.010 0.010 0.010 0.011 0.011 0.011

Plants-455 0.024 0.020 0.017 0.015 0.015 0.016 0.016 0.017

Plants-133 0.022 0.023 0.025 0.026 0.022 0.019 0.018 0.017

Plants-168 0.024 0.025 0.027 0.027 0.022 0.018 0.017 0.016

Plants-476 0.024 0.025 0.027 0.032 0.029 0.023 0.019 0.017

Plants-543 0.022 0.023 0.026 0.024 0.020 0.017 0.016 0.015

Plants-137 0.012 0.013 0.014 0.016 0.022 0.035 0.052 0.073

Plants-485 0.024 0.020 0.016 0.015 0.015 0.016 0.016 0.017

Plants-528 0.026 0.027 0.029 0.026 0.021 0.019 0.018 0.018

Plants-520 0.023 0.025 0.027 0.033 0.037 0.029 0.023 0.019

Plants-514 0.013 0.013 0.014 0.014 0.016 0.019 0.026 0.038

Plants-517 0.024 0.019 0.016 0.015 0.015 0.016 0.016 0.017

Plants-529 0.022 0.023 0.024 0.022 0.018 0.017 0.016 0.016

Plants-557 0.024 0.024 0.019 0.016 0.015 0.015 0.015 0.016

Plants-492 0.023 0.020 0.015 0.013 0.013 0.013 0.013 0.014

Plants-186 0.015 0.012 0.010 0.009 0.009 0.009 0.010 0.010

Plants-179 0.013 0.013 0.014 0.016 0.022 0.036 0.056 0.077

Plants-560 0.015 0.018 0.024 0.031 0.039 0.050 0.053 0.040

Plants-530 0.019 0.022 0.027 0.032 0.041 0.050 0.041 0.029

Plants-440 0.023 0.023 0.019 0.016 0.015 0.014 0.015 0.015

Plants-513 0.021 0.019 0.015 0.014 0.013 0.014 0.014 0.015

Plants-127 0.023 0.024 0.024 0.019 0.016 0.015 0.014 0.014

Plants-524 0.023 0.024 0.025 0.022 0.018 0.016 0.015 0.015

Plants-122 0.009 0.009 0.009 0.010 0.011 0.015 0.023 0.036

Plants-508 0.015 0.013 0.012 0.012 0.013 0.014 0.014 0.015

Lichens-567 0.016 0.014 0.013 0.013 0.013 0.014 0.014 0.015

Plants-507 0.021 0.023 0.020 0.016 0.014 0.013 0.013 0.013

Plants-519 0.023 0.024 0.025 0.021 0.017 0.015 0.014 0.014

Plants-551 0.022 0.023 0.025 0.023 0.019 0.016 0.014 0.014

Plants-415 0.017 0.018 0.020 0.022 0.018 0.013 0.009 0.007
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